sympy.integrals.inverse_laplace_transform() in python

Laplace Transform Ultimate Study Guide
Laplace Transform Ultimate Study Guide

sympy.integrals.inverse_laplace_transform() in python

With the help of inverse_laplace_transform() method, we can compute the inverse of laplace transformation of F(s).

Syntax : inverse_laplace_transform(F, s, t)
Return : Return the unevaluated transformation function.

Example #1 :
In this example, we can see that by using inverse_laplace_transform() method, we are able to compute the inverse laplace transformation and return the unevaluated function.

Table of Contents

Python3

from
sympy.integrals.transforms
import
inverse_laplace_transform

from
sympy
import
exp, Symbol

from
sympy.abc
import
s, t

a
=
Symbol(
'a'
, positive
=
True
)

gfg
=
inverse_laplace_transform(exp(
-
a
*
s)
/
s, s, t)

print
(gfg)

Output :

Heaviside(-a + t)

Example #2 :

Python3

from
sympy.integrals.transforms
import
inverse_laplace_transform

from
sympy
import
exp, Symbol

from
sympy.abc
import
s, t

a
=
Symbol(
'a'
, positive
=
True
)

gfg
=
inverse_laplace_transform(exp(
-
a
*
s)
/
s, s,
5
)

print
(gfg)

Output :

Heaviside(5 – a)

Example #3:

Python3

from
sympy.integrals.transforms
import
inverse_laplace_transform

from
sympy
import
exp, Symbol, sin

from
sympy.abc
import
s, t

a
=
Symbol(
'a'
, positive
=
True
)

gfg
=
inverse_laplace_transform(
1
/
(s
*
*
2
+
a
*
*
2
), s,
5
)

print
(gfg)

Output :

sin(5*a)/a

Last Updated :
04 Feb, 2023

Like Article

Save Article

You are watching: sympy.integrals.inverse_laplace_transform() in python. Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts