# SOLVED: Lambda Calculus: Alpha Renaming, Beta Reduction, Eta Conversion 1. a-convert the outer-most x to y in the following calculus expressions, if possible: (a) y.(Î»y.yy) (b) Ay.(yy.yx) -reduce the

β-reduction and normal form
β-reduction and normal form

Get 5 free video unlocks on our app with code GOMOBILE

Snapsolve any problem by taking a picture.
Try it in the Numerade app?

Lambda Calculus: Alpha Renaming, Beta Reduction, Eta Conversion
1. a-convert the outer-most x to y in the following calculus expressions, if possible: (a) y.(Î»y.yy) (b) Ay.(yy.yx)
-reduce the following calculus expressions, if possible: (Xx.Xy.(xy)(yw)) (xx.(xx) xx.(xx))
(c) (d)
n-reduce the following calculus expressions, if possible: (e) Xx.(xy.xx) (f) Xx.(y.yx)

This problem has been solved!

Try Numerade free for 7 days

04:46

Find the partial derivatives. The variables are restricted to a domain on which the function is defined.$$f_{x} \text { and } f_{y} \text { if } f(x, y)=A^{a} x^{a+\beta} y^{1-a-\beta}$$

02:46

Express the following derivatives in ” $\partial^{\prime \prime}$ notation.(a) $f_{x x x}$(b) $f_{x y y}$(c) $f_{y y x x}$(d) $f_{x y y y}$

02:15

Express the following derivatives in ” $\partial$ ” notation.(a) $f_{x x x}$(b) $f_{x y y}$(c) $f_{y y x x}$(d) $f_{x y y y}$

01:12

Use partial differentiation to determine expressions for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in the following cases:(a) $x^{3}+y^{3}-2 x^{2} y=0$(b) $e^{x} \cos y=e^{y} \sin x$(c) $\sin ^{2} x-5 \sin x \cos y+\tan y=0$

01:08

Partial derivative

03:36

Partial DerivativesEvaluate the partial derivative with respect to x, y, and z (if the function contains 2) of each of the following functions:a. f(x,y) = y * ln(x)b. f(x,y,z) = ln(xy^2) + 2c. f(x,y) = x^5 + 4v(x) + ln(x^2) + Tyd. f(x,y) = TxZy^2e. f(x,y) = Zy * ln(x) * 3yf. f(x,y) = 2x^2

06:38

Evaluate all first and second partial derivatives of the following functions:(a) $f(x, y)=x \arctan (x / y)$(b) $f(x, y)=\cos \sqrt{x^{2}+y^{2}}$(c) $f(x, y)=\operatorname{cxp}\left(-x^{2}-y^{2}\right)$

Oops! There was an issue generating an instant solution

Create an account to get free access

or

EMAIL