Right Isosceles Triangle

7.1 #13 Finding the lengths of two legs of an isosceles right triangle when given the hypotenuse
7.1 #13 Finding the lengths of two legs of an isosceles right triangle when given the hypotenuse

Right Isosceles Triangle

  • Right isosceles triangle (a two-dimensional figure) has one side a right 90° interior angle and the other two angles are 45°.
  • Angle bisector of a right isosceles triangle is a line that splits an angle into two equal angles.
  • Circumcircle is a circle that passes through all the vertices of a two-dimensional figure.
  • Hypotenuse of a right isosceles triangle is the longest side or the side opposite the right angle.
  • Inscribed circle is the Iargest circle possible that can fit on the inside of a two-dimensional figure.
  • Median of a right isosceles triangle is a line segment from a vertex (coiner point) to the midpoint of the opposite side.
  • Semiperimeter is one half of the perimeter.
  • Side of a right triangle is one half of the perimeter.
  • Two sides are congruent.
  • 3 edges
  • 3 vertexs
  • a = opposite leg
  • b = adjacent leg
  • c = hypotenuse
  • Angles: ∠A, ∠B, ∠C
  • Height: \(h_a\), \(h_b\), \(h_c\)
  • Median: \(m_a\), \(m_b\), \(m_c\) – A line segment from a vertex (corner point) to the midpoint of the opposite side
  • Angle bisectors: \(t_a\), \(t_b\), \(t_c\) – A line that splits an angle into two equal angles
Angle bisector of a Right Isosceles Triangle formulas

\(\large{ t_a = 2\;b\;c \;\; cos \; \frac { \frac {A}{2} }{ b \;+\; c } }\)

\(\large{ t_a = \sqrt { bc \; \frac { 1 \;-\; a^2 } { \left( b \;+\; c \right)^2 } } }\)

\(\large{ t_b = 2\;a\;c \;\; cos \; \frac { \frac {B}{2} }{ a \;+\; c } }\)

\(\large{ t_b = \sqrt { a\;c \; \frac { 1 \;-\; b^2 } { \left( a \;+\; c \right)^2 } } }\)

\(\large{ t_c = a\;b \; \sqrt { \frac { 2 }{ a \;+\; b } } }\)

Symbol English Metric
\(\large{ t_a, t_b, t_c }\) = angle bisector \(\large{ in }\) \(\large{ mm }\)
\(\large{ A, B, C }\) = angle \(\large{ deg }\) \(\large{ rad }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
Area of a Right Isosceles Triangle formulas

\(\large{ A_{area} = \frac {h\;b} {2} }\)

\(\large{ A_{area} = \frac {1} {2}\; b\;h }\)

\(\large{ A_{area} = a\;b\; \frac {\sin \;y} {2} }\)

Symbol English Metric
\(\large{ A_{area} }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
\(\large{ h }\) = height \(\large{ in }\) \(\large{ mm }\)
Circumcircle of a Right sosceles Triangle formulas

\(\large{ R = \frac { 1 } { 2 } \; \sqrt { a^2 + b^2 } }\)

\(\large{ R = \frac { H } { 2 } }\)

Symbol English Metric
\(\large{ R }\) = outcircle \(\large{ in }\) \(\large{ mm }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
\(\large{ H }\) = hypotenuse \(\large{ in }\) \(\large{ mm }\)
Height of a Right Isosceles Triangle formula
\(\large{ h_c = 2\; \frac {A_{area}}{b} }\)
Symbol English Metric
\(\large{ h^c }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ A_{area} }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
Inscribed Circle of a Right Isosceles Triangle formula
\(\large{ r = \frac { a \;+\; b \;-\; c } { 2 } }\)
Symbol English Metric
\(\large{ r }\) = incircle \(\large{ in }\) \(\large{ mm }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
Median of a Right Isosceles Triangle formulas

\(\large{ m_a = \sqrt { \frac { 4\;b^2 \;+\; a^2 }{ 2 } } }\)

\(\large{ m_b = \sqrt { \frac { 4\;a^2 \;+\; b^2 }{ 2 } } }\)

\(\large{ m_c = \frac {c} {2} }\)

Symbol English Metric
\(\large{ m_a, m_b, m_c }\) = median \(\large{ in }\) \(\large{ mm }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
Perimeter of a Right Isosceles Triangle formula
\(\large{ P = a + b + c }\)
Symbol English Metric
\(\large{ P }\) = perimeter \(\large{ in }\) \(\large{ mm }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
Side of a Right Isosceles Triangle formula

\(\large{ a = P – b – c }\)

\(\large{ a = 2\; \frac {A_{area}} {b\;\sin y} }\)

\(\large{ b = P – a – c }\)

\(\large{ b = 2\; \frac {A_{area}}{h} }\)

\(\large{ c = P – a – b }\)

Symbol English Metric
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
\(\large{ A_{area} }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ P }\) = perimeter \(\large{ in }\) \(\large{ mm }\)
Trig Functions
Find A
Find B
Find a
Find b
Find c
Find Area

You are watching: Right Isosceles Triangle. Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts