# Integrate x / (x2 + 1) (x

Integral of x^2/(x^2+1)
Integral of x^2/(x^2+1)

Ex 7.5

Ex 7.5, 2

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important

Ex 7.5, 7 Important You are here

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important

Ex 7.5, 21 Important

Ex 7.5, 22 (MCQ)

Ex 7.5, 23 (MCQ) Important

Last updated at May 29, 2023 by Teachoo

Ex 7.5, 7 /( ^2 + 1)( 1) Let I= 1 /( ^2 + 1)( 1) We can write integrand as /( ^2 + 1)( 1) =( + )/(( ^2 + 1) ) + /(( 1) ) /( ^2 + 1)( 1) =(( + )( 1) + ( ^2 + 1))/( ^2 + 1)( 1) By Cancelling denominator =( + )( 1)+ ( ^2+1) Putting x = 1, in (1) =( + )( 1)+ ( ^2+1) 1=( 1+ )(1 1)+ (1^2+1) 1=( + ) 0+ (1+1) 1=0+2 =1/2 Putting x = 0 , in (1) =( + )( 1)+ ( ^2+1) 0=( 0+ )(0 1)+ (0+1) 0 = ( 1)+ = =1/2 Putting x = 1 1=( ( 1)+ )( 1 1)+ ((1)^2+1) 1=( + )( 2)+ (1+1) 1=2 2 +2 1=2 2 1/2+2 1/2 1=2 1+1 1=2 =( 1)/2 Hence we can write /( ^2 + 1)( 1) =(( 1/2 + 1/2))/(( ^2 + 1) ) + (1/2)/(( 1) ) =( 1 . )/(2 ( ^2 + 1) ) + 1/(2 ( ^2 + 1) )+1/2( 1) Integrating . . . I= 1 /( ^2 + 1)( 1) = 1/2 1 /( ^2 + 1) +1/2 1 /( ^2 + 1) + 1/2 1 /( 1) Solving I1= 1/2 1 /(( ^2 + 1) ) Put ^2+1= Different both sides w.r.t. 2 +0= / = /2 Hence we can write 1/2 1 /(( ^2 + 1) ) = 1/2 1 / /2 = 1/(2 2) 1 / = 1/4 log | |+ 1 = 1/4 log | ^2+1|+ 1 Solving I2=1/2 1 1/( ^2 + 1) =1/2 tan^( 1) + 2 Solving I3=1/2 1 1/( 1) =1/2 log | 1|+ 3 Hence I=I1+I2+I3 = 1/4 log | ^2+1|+ 1+1/2 tan^( 1) + 2+1/2 log | 1|+ 3 = 1/4 log | ^2+1|+1/2 tan^( 1) +1/2 log | 1|+ = 1/4 log | ^2+1|+1/2 tan^( 1) +1/2 log | 1|+ = / | | / | ^ + |+ / ^( ) + C

You are watching: Integrate x / (x2 + 1) (x. Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post