Integrate 1

Integration By Partial Fractions
Integration By Partial Fractions

Ex 7.5, 6 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.5, 6 - Chapter 7 Class 12 Integrals - Part 3
Ex 7.5, 6 - Chapter 7 Class 12 Integrals - Part 4
Ex 7.5, 6 - Chapter 7 Class 12 Integrals - Part 5

Ex 7.5

Ex 7.5, 2

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important You are here

Ex 7.5, 7 Important

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important

Ex 7.5, 21 Important

Ex 7.5, 22 (MCQ)

Ex 7.5, 23 (MCQ) Important

Last updated at May 29, 2023 by Teachoo

Ex 7.5, 6 Integrate the function (1 − 𝑥2)/(𝑥(1 − 2𝑥)) ∫1▒(1 − 𝑥2)/(𝑥(1 − 2𝑥)) 𝑑𝑥= ∫1▒(1 − 𝑥^2)/(𝑥 − 2𝑥^2 ) 𝑑𝑥 =∫1▒(1/2 + (− 𝑥/2 + 1)/(−2𝑥^2+ 𝑥)) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥+1/2 ∫1▒(−𝑥 + 2)/(−2𝑥^2+ 𝑥) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥−1/2 ∫1▒(𝑥 − 2)/𝑥(1 − 2𝑥) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥−1/2 ∫1▒(𝑥 − 2)/𝑥(2𝑥 − 1) 𝑑𝑥 −2𝑥^2+𝑥 −𝑥^2+𝑥/2 Now Solving (𝑥 − 2)/(𝑥 (2𝑥 − 1) ) = 𝐴/𝑥 + 𝐵/(2𝑥 − 1) (𝑥 − 2)/(𝑥 (2𝑥 − 1) ) = (𝐴(2𝑥 − 1) + 𝐵𝑥)/(𝑥 (2𝑥 − 1) ) Cancelling denominator 𝑥−2=𝐴(2𝑥−1)+𝐵𝑥 Putting x = 0 in (2) 𝑥−2=𝐴(2𝑥−1)+𝐵𝑥 0−2 = 𝐴(2×0−1) + 𝐵×0 −2 = A(−1) …(2) −2 = −𝐴 𝐴 = 2 Similarly Putting x = 1/2 in (2) 𝑥−2=𝐴(2𝑥−1)+𝐵𝑥 1/2 − 2 = A(1/2×2−1)+𝐵×1/2 (−3)/2 = A(1−1)+𝐵×1/2 (−3)/2 = A×0+ 𝐵/2 (−3)/2 = 𝐵/2 𝐵 = −3 Hence we can write it as (𝑥 − 2)/(𝑥 (2𝑥 − 1) ) = 𝐴/𝑥 + 𝐵/(2𝑥 − 1) (𝑥 − 2)/(𝑥 (2𝑥 − 1) ) = 2/𝑥 + ((−3))/(2𝑥 − 1) = 2/𝑥 − 3/(2𝑥 − 1) Therefore , from (1) we get, ∫1▒(1 − 𝑥^2)/𝑥(1 − 2𝑥) =1/2 ∫1▒𝑑𝑥+ 1/2 ∫1▒(2/𝑥 − 3/(2𝑥 − 1)) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥+ 2/2 ∫1▒〖𝑑𝑥/𝑥 −3/2〗 ∫1▒𝑑𝑥/(2𝑥 − 1) =1/2 ∫1▒𝑑𝑥+∫1▒〖𝑑𝑥/𝑥 + 3/2〗 ∫1▒𝑑𝑥/(1 − 2𝑥) =1/2 𝑥+log|𝑥|+3/2 log|1 − 2𝑥|/(−2) +𝐶 =𝒙/𝟐 +𝒍𝒐𝒈|𝒙|−𝟑/𝟒 𝒍𝒐𝒈|𝟏−𝟐𝒙|+𝑪

You are watching: Integrate 1. Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts