How to Integrate by Using Partial Fractions when the Denominator Contains Only Linear Factors

{“appState”:{“pageLoadApiCallsStatus”:true},”articleState”:{“article”:{“headers”:{“creationTime”:”2016-03-26T21:19:03+00:00″,”modifiedTime”:”2016-03-26T21:19:03+00:00″,”timestamp”:”2022-09-14T18:09:58+00:00″},”data”:{“breadcrumbs”:[{“name”:”Academics & The Arts”,”_links”:{“self”:”https://dummies-api.dummies.com/v2/categories/33662″},”slug”:”academics-the-arts”,”categoryId”:33662},{“name”:”Math”,”_links”:{“self”:”https://dummies-api.dummies.com/v2/categories/33720″},”slug”:”math”,”categoryId”:33720},{“name”:”Calculus”,”_links”:{“self”:”https://dummies-api.dummies.com/v2/categories/33723″},”slug”:”calculus”,”categoryId”:33723}],”title”:”How to Integrate by Using Partial Fractions when the Denominator Contains Only Linear Factors”,”strippedTitle”:”how to integrate by using partial fractions when the denominator contains only linear factors”,”slug”:”how-to-integrate-by-using-partial-fractions-when-the-denominator-contains-only-linear-factors”,”canonicalUrl”:””,”seo”:{“metaDescription”:”You can use the partial fractions method to integrate rational functions (Recall that a rational function is one polynomial divided by another.) The basic idea “,”noIndex”:0,”noFollow”:0},”content”:”<p>You can use the partial fractions method to integrate rational functions (Recall that a rational function is one polynomial divided by another.) The basic idea behind the partial fraction approach is “unadding” a fraction: </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204814.image0.png\” width=\”520\” height=\”104\” alt=\”image0.png\”/>\n<p>Before using the partial fractions technique, you have to check that your integrand is a “proper” fraction — that’s one where the degree of the numerator is less than the degree of the denominator. If the integrand is “improper,” like </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204815.image1.png\” width=\”119\” height=\”49\” alt=\”image1.png\”/>\n<p>you have to first do long polynomial division to transform the improper fraction into a sum of a polynomial (which sometimes will just be a number) and a proper fraction. Here’s the division for this improper fraction (without explanation). Basically, it works just like regular long division.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204816.image2.png\” width=\”199\” height=\”104\” alt=\”image2.png\”/>\n<p>With regular division, if you divide 4 into 23, you get a quotient of 5 and a remainder of 3, which tells you that </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204817.image3.png\” width=\”155\” height=\”41\” alt=\”image3.png\”/>\n<p>The result of the above polynomial division tells you the same thing. </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204818.image4.png\” width=\”493\” height=\”144\” alt=\”image4.png\”/>\n<p>The first integral is just 2<i>x</i>. You would then do the second integral with the partial fractions method.</p>\n<p>Here’s how the method works, but let’s tackle a less complicated integral than the one immediately above; this will make the technique easier to follow. </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204819.image5.png\” width=\”164\” height=\”45\” alt=\”image5.png\”/>\n<ol class=\”level-one\”>\n <li><p class=\”first-para\”>Factor the denominator.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204820.image6.png\” width=\”167\” height=\”44\” alt=\”image6.png\”/>\n </li>\n <li><p class=\”first-para\”>Break up the fraction on the right into a sum of fractions, where each factor of the denominator in Step 1 becomes the denominator of a separate fraction. Then put unknowns in the numerator of each fraction.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204821.image7.png\” width=\”203\” height=\”44\” alt=\”image7.png\”/>\n </li>\n <li><p class=\”first-para\”>Multiply both sides of this equation by the denominator of the left side. </p>\n<p class=\”child-para\”>This is algebra I, so you can’t possibly want to see the steps. Right?</p>\n<p class=\”child-para\”>5 = <i>A</i>(<i>x</i> + 3) + <i>B</i>(<i>x</i> – 2)</p>\n </li>\n <li><p class=\”first-para\”>Take the roots of the linear factors and plug them — one at a time — into <i>x</i> in the equation from Step 3, and solve for the unknowns.</p>\n<p class=\”child-para\”>If <i>x</i> = 2</p>\n<p class=\”child-para\”>5 = <i>A</i>(2 + 3) + <i>B</i>(2 – 2)</p>\n<p class=\”child-para\”>5 = 5<i>A</i></p>\n<p class=\”child-para\”><i>A</i> = 1</p>\n<p class=\”child-para\”>Or if <i>x</i> = –3</p>\n<p class=\”child-para\”>5 = <i>A</i>(–3 + 3) +<i> B</i>(–3 – 2)</p>\n<p class=\”child-para\”>5 = –5<i>B</i></p>\n<p class=\”child-para\”><i>B</i> = –1</p>\n </li>\n <li><p class=\”first-para\”>Plug these results into the <i>A</i> and <i>B</i> in the equation from Step 2.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204822.image8.png\” width=\”203\” height=\”44\” alt=\”image8.png\”/>\n </li>\n <li><p class=\”first-para\”>Split up the original integral into the partial fractions from Step 5 and you’re home free.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204823.image9.png\” width=\”352\” height=\”117\” alt=\”image9.png\”/>\n </li>\n</ol>”,”description”:”<p>You can use the partial fractions method to integrate rational functions (Recall that a rational function is one polynomial divided by another.) The basic idea behind the partial fraction approach is “unadding” a fraction: </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204814.image0.png\” width=\”520\” height=\”104\” alt=\”image0.png\”/>\n<p>Before using the partial fractions technique, you have to check that your integrand is a “proper” fraction — that’s one where the degree of the numerator is less than the degree of the denominator. If the integrand is “improper,” like </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204815.image1.png\” width=\”119\” height=\”49\” alt=\”image1.png\”/>\n<p>you have to first do long polynomial division to transform the improper fraction into a sum of a polynomial (which sometimes will just be a number) and a proper fraction. Here’s the division for this improper fraction (without explanation). Basically, it works just like regular long division.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204816.image2.png\” width=\”199\” height=\”104\” alt=\”image2.png\”/>\n<p>With regular division, if you divide 4 into 23, you get a quotient of 5 and a remainder of 3, which tells you that </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204817.image3.png\” width=\”155\” height=\”41\” alt=\”image3.png\”/>\n<p>The result of the above polynomial division tells you the same thing. </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204818.image4.png\” width=\”493\” height=\”144\” alt=\”image4.png\”/>\n<p>The first integral is just 2<i>x</i>. You would then do the second integral with the partial fractions method.</p>\n<p>Here’s how the method works, but let’s tackle a less complicated integral than the one immediately above; this will make the technique easier to follow. </p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204819.image5.png\” width=\”164\” height=\”45\” alt=\”image5.png\”/>\n<ol class=\”level-one\”>\n <li><p class=\”first-para\”>Factor the denominator.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204820.image6.png\” width=\”167\” height=\”44\” alt=\”image6.png\”/>\n </li>\n <li><p class=\”first-para\”>Break up the fraction on the right into a sum of fractions, where each factor of the denominator in Step 1 becomes the denominator of a separate fraction. Then put unknowns in the numerator of each fraction.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204821.image7.png\” width=\”203\” height=\”44\” alt=\”image7.png\”/>\n </li>\n <li><p class=\”first-para\”>Multiply both sides of this equation by the denominator of the left side. </p>\n<p class=\”child-para\”>This is algebra I, so you can’t possibly want to see the steps. Right?</p>\n<p class=\”child-para\”>5 = <i>A</i>(<i>x</i> + 3) + <i>B</i>(<i>x</i> – 2)</p>\n </li>\n <li><p class=\”first-para\”>Take the roots of the linear factors and plug them — one at a time — into <i>x</i> in the equation from Step 3, and solve for the unknowns.</p>\n<p class=\”child-para\”>If <i>x</i> = 2</p>\n<p class=\”child-para\”>5 = <i>A</i>(2 + 3) + <i>B</i>(2 – 2)</p>\n<p class=\”child-para\”>5 = 5<i>A</i></p>\n<p class=\”child-para\”><i>A</i> = 1</p>\n<p class=\”child-para\”>Or if <i>x</i> = –3</p>\n<p class=\”child-para\”>5 = <i>A</i>(–3 + 3) +<i> B</i>(–3 – 2)</p>\n<p class=\”child-para\”>5 = –5<i>B</i></p>\n<p class=\”child-para\”><i>B</i> = –1</p>\n </li>\n <li><p class=\”first-para\”>Plug these results into the <i>A</i> and <i>B</i> in the equation from Step 2.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204822.image8.png\” width=\”203\” height=\”44\” alt=\”image8.png\”/>\n </li>\n <li><p class=\”first-para\”>Split up the original integral into the partial fractions from Step 5 and you’re home free.</p>\n<img src=\”https://www.dummies.com/wp-content/uploads/204823.image9.png\” width=\”352\” height=\”117\” alt=\”image9.png\”/>\n </li>\n</ol>”,”blurb”:””,”authors”:[],”primaryCategoryTaxonomy”:{“categoryId”:33723,”title”:”Calculus”,”slug”:”calculus”,”_links”:{“self”:”https://dummies-api.dummies.com/v2/categories/33723″}},”secondaryCategoryTaxonomy”:{“categoryId”:0,”title”:null,”slug”:null,”_links”:null},”tertiaryCategoryTaxonomy”:{“categoryId”:0,”title”:null,”slug”:null,”_links”:null},”trendingArticles”:null,”inThisArticle”:[],”relatedArticles”:{“fromBook”:[],”fromCategory”:[{“articleId”:256336,”title”:”Solve a Difficult Limit Problem Using the Sandwich Method”,”slug”:”solve-a-difficult-limit-problem-using-the-sandwich-method”,”categoryList”:[“academics-the-arts”,”math”,”calculus”],”_links”:{“self”:”https://dummies-api.dummies.com/v2/articles/256336″}},{“articleId”:255765,”title”:”Solve Limit Problems on a Calculator Using Graphing Mode”,”slug”:”solve-limit-problems-on-a-calculator-using-graphing-mode”,”categoryList”:[“academics-the-arts”,”math”,”calculus”],”_links”:{“self”:”https://dummies-api.dummies.com/v2/articles/255765″}},{“articleId”:255755,”title”:”Solve Limit Problems on a Calculator Using the Arrow-Number”,”slug”:”solve-limit-problems-on-a-calculator-using-the-arrow-number”,”categoryList”:[“academics-the-arts”,”math”,”calculus”],”_links”:{“self”:”https://dummies-api.dummies.com/v2/articles/255755″}},{“articleId”:255261,”title”:”Limit and Continuity Graphs: Practice Questions”,”slug”:”limit-and-continuity-graphs-practice-questions”,”categoryList”:[“academics-the-arts”,”math”,”calculus”],”_links”:{“self”:”https://dummies-api.dummies.com/v2/articles/255261″}},{“articleId”:255255,”title”:”Use the Vertical Line Test to Identify a Function”,”slug”:”use-the-vertical-line-test-to-identify-a-function”,”categoryList”:[“academics-the-arts”,”math”,”calculus”],”_links”:{“self”:”https://dummies-api.dummies.com/v2/articles/255255″}}]},”hasRelatedBookFromSearch”:true,”relatedBook”:{“bookId”:282153,”slug”:”differential-equations-for-dummies”,”isbn”:”9780470178140″,”categoryList”:[“academics-the-arts”,”math”,”calculus”],”amazon”:{“default”:”https://www.amazon.com/gp/product/0470178140/ref=as_li_tl?ie=UTF8&tag=wiley01-20″,”ca”:”https://www.amazon.ca/gp/product/0470178140/ref=as_li_tl?ie=UTF8&tag=wiley01-20″,”indigo_ca”:”http://www.tkqlhce.com/click-9208661-13710633?url=https://www.chapters.indigo.ca/en-ca/books/product/0470178140-item.html&cjsku=978111945484″,”gb”:”https://www.amazon.co.uk/gp/product/0470178140/ref=as_li_tl?ie=UTF8&tag=wiley01-20″,”de”:”https://www.amazon.de/gp/product/0470178140/ref=as_li_tl?ie=UTF8&tag=wiley01-20″},”image”:{“src”:”https://www.dummies.com/covers/9780470178140.jpg”,”width”:250,”height”:350},”title”:”Differential Equations For Dummies”,”testBankPinActivationLink”:””,”bookOutOfPrint”:false,”authorsInfo”:”\n <p><p><b><b data-author-id=\”8967\”>Steven Holzner</b>, PhD,</b> taught physics at Cornell University for more than 10 years.</p>”,”authors”:[{“authorId”:8967,”name”:”Steven Holzner”,”slug”:”steven-holzner”,”description”:” <p><b>Steven Holzner, PhD,</b> taught physics at Cornell University for more than 10 years. “,”hasArticle”:false,”_links”:{“self”:”https://dummies-api.dummies.com/v2/authors/8967″}}],”_links”:{“self”:”https://dummies-api.dummies.com/v2/books/282153″}},”collections”:[],”articleAds”:{“footerAd”:”<div class=\”du-ad-region row\” id=\”article_page_adhesion_ad\”><div class=\”du-ad-unit col-md-12\” data-slot-id=\”article_page_adhesion_ad\” data-refreshed=\”false\” \r\n data-target = \”[{&quot;key&quot;:&quot;cat&quot;,&quot;values&quot;:[&quot;academics-the-arts&quot;,&quot;math&quot;,&quot;calculus&quot;]},{&quot;key&quot;:&quot;isbn&quot;,&quot;values&quot;:[null]}]\” id=\”du-slot-632218f61a1f2\”></div></div>”,”rightAd”:”<div class=\”du-ad-region row\” id=\”article_page_right_ad\”><div class=\”du-ad-unit col-md-12\” data-slot-id=\”article_page_right_ad\” data-refreshed=\”false\” \r\n data-target = \”[{&quot;key&quot;:&quot;cat&quot;,&quot;values&quot;:[&quot;academics-the-arts&quot;,&quot;math&quot;,&quot;calculus&quot;]},{&quot;key&quot;:&quot;isbn&quot;,&quot;values&quot;:[null]}]\” id=\”du-slot-632218f61aa5b\”></div></div>”},”articleType”:{“articleType”:”Articles”,”articleList”:null,”content”:null,”videoInfo”:{“videoId”:null,”name”:null,”accountId”:null,”playerId”:null,”thumbnailUrl”:null,”description”:null,”uploadDate”:null}},”sponsorship”:{“sponsorshipPage”:false,”backgroundImage”:{“src”:null,”width”:0,”height”:0},”brandingLine”:””,”brandingLink”:””,”brandingLogo”:{“src”:null,”width”:0,”height”:0},”sponsorAd”:””,”sponsorEbookTitle”:””,”sponsorEbookLink”:””,”sponsorEbookImage”:{“src”:null,”width”:0,”height”:0}},”primaryLearningPath”:”Advance”,”lifeExpectancy”:null,”lifeExpectancySetFrom”:null,”dummiesForKids”:”no”,”sponsoredContent”:”no”,”adInfo”:””,”adPairKey”:[]},”status”:”publish”,”visibility”:”public”,”articleId”:192159},”articleLoadedStatus”:”success”},”listState”:{“list”:{},”objectTitle”:””,”status”:”initial”,”pageType”:null,”objectId”:null,”page”:1,”sortField”:”time”,”sortOrder”:1,”categoriesIds”:[],”articleTypes”:[],”filterData”:{},”filterDataLoadedStatus”:”initial”,”pageSize”:10},”adsState”:{“pageScripts”:{“headers”:{“timestamp”:”2023-08-11T10:50:01+00:00″},”adsId”:0,”data”:{“scripts”:[{“pages”:[“all”],”location”:”header”,”script”:”<!–Optimizely Script–>\r\n<script src=\”https://cdn.optimizely.com/js/10563184655.js\”></script>”,”enabled”:false},{“pages”:[“all”],”location”:”header”,”script”:”<!– comScore Tag –>\r\n<script>var _comscore = _comscore || [];_comscore.push({ c1: \”2\”, c2: \”15097263\” });(function() {var s = document.createElement(\”script\”), el = document.getElementsByTagName(\”script\”)[0]; s.async = true;s.src = (document.location.protocol == \”https:\” ? \”https://sb\” : \”http://b\”) + \”.scorecardresearch.com/beacon.js\”;el.parentNode.insertBefore(s, el);})();</script><noscript><img src=\”https://sb.scorecardresearch.com/p?c1=2&c2=15097263&cv=2.0&cj=1\” /></noscript>\r\n<!– / comScore Tag –>”,”enabled”:true},{“pages”:[“all”],”location”:”footer”,”script”:”<!–BEGIN QUALTRICS WEBSITE FEEDBACK SNIPPET–>\r\n<script type=’text/javascript’>\r\n(function(){var g=function(e,h,f,g){\r\nthis.get=function(a){for(var a=a+\”=\”,c=document.cookie.split(\”;\”),b=0,e=c.length;b<e;b++){for(var d=c[b];\” \”==d.charAt(0);)d=d.substring(1,d.length);if(0==d.indexOf(a))return d.substring(a.length,d.length)}return null};\r\nthis.set=function(a,c){var b=\”\”,b=new Date;b.setTime(b.getTime()+6048E5);b=\”; expires=\”+b.toGMTString();document.cookie=a+\”=\”+c+b+\”; path=/; \”};\r\nthis.check=function(){var a=this.get(f);if(a)a=a.split(\”:\”);else if(100!=e)\”v\”==h&&(e=Math.random()>=e/100?0:100),a=[h,e,0],this.set(f,a.join(\”:\”));else return!0;var c=a[1];if(100==c)return!0;switch(a[0]){case \”v\”:return!1;case \”r\”:return c=a[2]%Math.floor(100/c),a[2]++,this.set(f,a.join(\”:\”)),!c}return!0};\r\nthis.go=function(){if(this.check()){var a=document.createElement(\”script\”);a.type=\”text/javascript\”;a.src=g;document.body&&document.body.appendChild(a)}};\r\nthis.start=function(){var t=this;\”complete\”!==document.readyState?window.addEventListener?window.addEventListener(\”load\”,function(){t.go()},!1):window.attachEvent&&window.attachEvent(\”onload\”,function(){t.go()}):t.go()};};\r\ntry{(new g(100,\”r\”,\”QSI_S_ZN_5o5yqpvMVjgDOuN\”,\”https://zn5o5yqpvmvjgdoun-wiley.siteintercept.qualtrics.com/SIE/?Q_ZID=ZN_5o5yqpvMVjgDOuN\”)).start()}catch(i){}})();\r\n</script><div id=’ZN_5o5yqpvMVjgDOuN’><!–DO NOT REMOVE-CONTENTS PLACED HERE–></div>\r\n<!–END WEBSITE FEEDBACK SNIPPET–>”,”enabled”:false},{“pages”:[“all”],”location”:”header”,”script”:”<!– Hotjar Tracking Code for http://www.dummies.com –>\r\n<script>\r\n (function(h,o,t,j,a,r){\r\n h.hj=h.hj||function(){(h.hj.q=h.hj.q||[]).push(arguments)};\r\n h._hjSettings={hjid:257151,hjsv:6};\r\n a=o.getElementsByTagName(‘head’)[0];\r\n r=o.createElement(‘script’);r.async=1;\r\n r.src=t+h._hjSettings.hjid+j+h._hjSettings.hjsv;\r\n a.appendChild(r);\r\n })(window,document,’https://static.hotjar.com/c/hotjar-‘,’.js?sv=’);\r\n</script>”,”enabled”:false},{“pages”:[“article”],”location”:”header”,”script”:”<!– //Connect Container: dummies –> <script src=\”//get.s-onetag.com/bffe21a1-6bb8-4928-9449-7beadb468dae/tag.min.js\” async defer></script>”,”enabled”:true},{“pages”:[“homepage”],”location”:”header”,”script”:”<meta name=\”facebook-domain-verification\” content=\”irk8y0irxf718trg3uwwuexg6xpva0\” />”,”enabled”:true},{“pages”:[“homepage”,”article”,”category”,”search”],”location”:”footer”,”script”:”<!– Facebook Pixel Code –>\r\n<noscript>\r\n<img height=\”1\” width=\”1\” src=\”https://www.facebook.com/tr?id=256338321977984&ev=PageView&noscript=1\”/>\r\n</noscript>\r\n<!– End Facebook Pixel Code –>”,”enabled”:true}]}},”pageScriptsLoadedStatus”:”success”},”navigationState”:{“navigationCollections”:[{“collectionId”:287568,”title”:”BYOB (Be Your Own Boss)”,”hasSubCategories”:false,”url”:”/collection/for-the-entry-level-entrepreneur-287568″},{“collectionId”:293237,”title”:”Be a Rad Dad”,”hasSubCategories”:false,”url”:”/collection/be-the-best-dad-293237″},{“collectionId”:295890,”title”:”Career Shifting”,”hasSubCategories”:false,”url”:”/collection/career-shifting-295890″},{“collectionId”:294090,”title”:”Contemplating the Cosmos”,”hasSubCategories”:false,”url”:”/collection/theres-something-about-space-294090″},{“collectionId”:287563,”title”:”For Those Seeking Peace of Mind”,”hasSubCategories”:false,”url”:”/collection/for-those-seeking-peace-of-mind-287563″},{“collectionId”:287570,”title”:”For the Aspiring Aficionado”,”hasSubCategories”:false,”url”:”/collection/for-the-bougielicious-287570″},{“collectionId”:291903,”title”:”For the Budding Cannabis Enthusiast”,”hasSubCategories”:false,”url”:”/collection/for-the-budding-cannabis-enthusiast-291903″},{“collectionId”:299891,”title”:”For the College Bound”,”hasSubCategories”:false,”url”:”/collection/for-the-college-bound-299891″},{“collectionId”:291934,”title”:”For the Exam-Season Crammer”,”hasSubCategories”:false,”url”:”/collection/for-the-exam-season-crammer-291934″},{“collectionId”:287569,”title”:”For the Hopeless Romantic”,”hasSubCategories”:false,”url”:”/collection/for-the-hopeless-romantic-287569″}],”navigationCollectionsLoadedStatus”:”success”,”navigationCategories”:{“books”:{“0”:{“data”:[{“categoryId”:33512,”title”:”Technology”,”hasSubCategories”:true,”url”:”/category/books/technology-33512″},{“categoryId”:33662,”title”:”Academics & The Arts”,”hasSubCategories”:true,”url”:”/category/books/academics-the-arts-33662″},{“categoryId”:33809,”title”:”Home, Auto, & Hobbies”,”hasSubCategories”:true,”url”:”/category/books/home-auto-hobbies-33809″},{“categoryId”:34038,”title”:”Body, Mind, & Spirit”,”hasSubCategories”:true,”url”:”/category/books/body-mind-spirit-34038″},{“categoryId”:34224,”title”:”Business, Careers, & Money”,”hasSubCategories”:true,”url”:”/category/books/business-careers-money-34224″}],”breadcrumbs”:[],”categoryTitle”:”Level 0 Category”,”mainCategoryUrl”:”/category/books/level-0-category-0″}},”articles”:{“0”:{“data”:[{“categoryId”:33512,”title”:”Technology”,”hasSubCategories”:true,”url”:”/category/articles/technology-33512″},{“categoryId”:33662,”title”:”Academics & The Arts”,”hasSubCategories”:true,”url”:”/category/articles/academics-the-arts-33662″},{“categoryId”:33809,”title”:”Home, Auto, & Hobbies”,”hasSubCategories”:true,”url”:”/category/articles/home-auto-hobbies-33809″},{“categoryId”:34038,”title”:”Body, Mind, & Spirit”,”hasSubCategories”:true,”url”:”/category/articles/body-mind-spirit-34038″},{“categoryId”:34224,”title”:”Business, Careers, & Money”,”hasSubCategories”:true,”url”:”/category/articles/business-careers-money-34224″}],”breadcrumbs”:[],”categoryTitle”:”Level 0 Category”,”mainCategoryUrl”:”/category/articles/level-0-category-0″}}},”navigationCategoriesLoadedStatus”:”success”},”searchState”:{“searchList”:[],”searchStatus”:”initial”,”relatedArticlesList”:[],”relatedArticlesStatus”:”initial”},”routeState”:{“name”:”Article3″,”path”:”/article/academics-the-arts/math/calculus/how-to-integrate-by-using-partial-fractions-when-the-denominator-contains-only-linear-factors-192159/”,”hash”:””,”query”:{},”params”:{“category1″:”academics-the-arts”,”category2″:”math”,”category3″:”calculus”,”article”:”how-to-integrate-by-using-partial-fractions-when-the-denominator-contains-only-linear-factors-192159″},”fullPath”:”/article/academics-the-arts/math/calculus/how-to-integrate-by-using-partial-fractions-when-the-denominator-contains-only-linear-factors-192159/”,”meta”:{“routeType”:”article”,”breadcrumbInfo”:{“suffix”:”Articles”,”baseRoute”:”/category/articles”},”prerenderWithAsyncData”:true},”from”:{“name”:null,”path”:”/”,”hash”:””,”query”:{},”params”:{},”fullPath”:”/”,”meta”:{}}},”dropsState”:{“submitEmailResponse”:false,”status”:”initial”},”sfmcState”:{“status”:”initial”},”profileState”:{“auth”:{},”userOptions”:{},”status”:”success”}}

You are watching: How to Integrate by Using Partial Fractions when the Denominator Contains Only Linear Factors. Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts