Question
Question asked by Filo student
Evaluation of Double integral (4) Qtestion(1) Soln \[ \begin{array}{l} \int_{x=0} y=0 \\ =\int_{x=0}^{x=1}\left[\frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}\left(\frac{y}{\sqrt{1+x^{2}}}\right)\right]_{y=0}^{y 0 \sqrt{1+x^{2}}} d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}}\left(\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}\right)-\tan ^{-1}(\theta)\right) d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}}\left(\tan ^{-1}(1)-0\right) d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}(\tan \pi / 4) d x \\ =\pi / 4 \int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}} d x \\ =\pi / 4\left[\log x+\sqrt{1+x^{2}}\right]_{x=0}^{x=1} \\ =\pi / 4[\log (1+\sqrt{2})-\log (1)] \\ \int_{0}^{1} \cdot \int_{0}^{\sqrt{1+x^{2}} \frac{d x d y}{1+x^{2}+y^{2}}}=\pi / 4 \log (1+\sqrt{2}) \\ \frac{1}{1} x \end{array} \] Scanned with CamScanner
Filo tutor solutions (1)
Learn from their 1-to-1 discussion with Filo tutors.
17 mins
Uploaded on: 1/16/2023
Connect instantly with this tutor
Connect now
Taught by
Babu Singh
Total classes on Filo by this tutor – 682
Connect instantly with this tutor
Was this solution helpful?
130
Share
Report
Still did not understand this question?
Mathematics tutors are online who are ready to help you right now.
Students who ask this question also asked
Question 1
अतः अधिकतम आयतन (volume) वाले शंकू (cone) का अर्द्धशीर्ष कोण है। दीर्घ उत्तरीय प्रश्न:- प्रश्न – 1 एक त्रिभुज के अन्दर एक ऐसा बिन्दु (point) ज्ञात करो कि इसकी तीनो शीर्ष बिन्दुओं से कोणीय दुरियों (angular distance) के वर्गो का योगफल निर्मिष्ट है। (500 शब्द, जून 2019, दिसम्बर 2018. जून 2017) उत्तर – माना की दिये हुए त्रिभुज के तीनों शीर्षो के निर्देशांक . माना अभीष्ट बिन्दु के निर्देशांक है। प्रश्नानुसार, हमें ऐसा ज्ञात करना है, कि निभिष्ट हो। \[ \begin{array}{l} \because \text { माना कि } Z=P A^{2}+P B^{2}+P C^{2} \\ = {\left[\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}\right]+\left[\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}\right]+} \\ {\left[\left(x-x_{3}\right)^{2}+\left(y-y_{3}\right)^{2}\right] } \end{array} \] अव के उच्चिएठ अथवा निभिष्ट होने के लिए, अर्थात् व अर्थात निभिष्ट है अथवा उच्चिएठ के लिए. अब Website www. ajaymeruvmoubooks.com
Views: 5,059
Question 3
Q8. \[ [5 \times 2=10] \] (a) Assuming that straight lines work as the plane mirror for a point, find the image of the point in the line . (b) If the lines are concurrent to each other find value of . \[ [5 \times 2=10] \] Q 9.
Views: 5,258
View more
Question 4
Comprehensive Exercise formula or formulae for the th term for each of the following (b) ,
Views: 5,756
Question Text |
Evaluation of Double integral (4) Qtestion(1) Soln \[ \begin{array}{l} \int_{x=0} y=0 \\ =\int_{x=0}^{x=1}\left[\frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}\left(\frac{y}{\sqrt{1+x^{2}}}\right)\right]_{y=0}^{y 0 \sqrt{1+x^{2}}} d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}}\left(\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}\right)-\tan ^{-1}(\theta)\right) d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}}\left(\tan ^{-1}(1)-0\right) d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}(\tan \pi / 4) d x \\ =\pi / 4 \int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}} d x \\ =\pi / 4\left[\log x+\sqrt{1+x^{2}}\right]_{x=0}^{x=1} \\ =\pi / 4[\log (1+\sqrt{2})-\log (1)] \\ \int_{0}^{1} \cdot \int_{0}^{\sqrt{1+x^{2}} \frac{d x d y}{1+x^{2}+y^{2}}}=\pi / 4 \log (1+\sqrt{2}) \\ \frac{1}{1} x \end{array} \] Scanned with CamScanner |
Updated On | Jan 16, 2023 |
Topic | Calculus |
Subject | Mathematics |
Class | Class 12 Passed |
Answer Type | Video solution: 1 |
Upvotes | 130 |
Avg. Video Duration | 17 min |