Evaluation of Double integral (4) Qtestion(1) ∫01​∫01+x2​​(1+x2+y2)dxdy​ ..

The Integral of 1/x EXPLAINED. It’s NOT what you think…
The Integral of 1/x EXPLAINED. It’s NOT what you think…

Question

Question asked by Filo student

Evaluation of Double integral (4) Qtestion(1) ∫01∫01+x2(1+x2+y2)dxd

Evaluation of Double integral (4) Qtestion(1) Soln \[ \begin{array}{l} \int_{x=0} y=0 \\ =\int_{x=0}^{x=1}\left[\frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}\left(\frac{y}{\sqrt{1+x^{2}}}\right)\right]_{y=0}^{y 0 \sqrt{1+x^{2}}} d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}}\left(\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}\right)-\tan ^{-1}(\theta)\right) d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}}\left(\tan ^{-1}(1)-0\right) d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}(\tan \pi / 4) d x \\ =\pi / 4 \int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}} d x \\ =\pi / 4\left[\log x+\sqrt{1+x^{2}}\right]_{x=0}^{x=1} \\ =\pi / 4[\log (1+\sqrt{2})-\log (1)] \\ \int_{0}^{1} \cdot \int_{0}^{\sqrt{1+x^{2}} \frac{d x d y}{1+x^{2}+y^{2}}}=\pi / 4 \log (1+\sqrt{2}) \\ \frac{1}{1} x \end{array} \] Scanned with CamScanner

Filo tutor solutions (1)

Learn from their 1-to-1 discussion with Filo tutors.

17 mins

Uploaded on: 1/16/2023

Connect instantly with this tutor

Connect now

Taught by

Babu Singh

Total classes on Filo by this tutor – 682

Connect instantly with this tutor

Was this solution helpful?

130

Share

Report

Doubt Icon

Still did not understand this question?

Mathematics tutors are online who are ready to help you right now.

Students who ask this question also asked

Question 1

अतः अधिकतम आयतन (volume) वाले शंकू (cone) का अर्द्धशीर्ष कोण है। दीर्घ उत्तरीय प्रश्न:- प्रश्न – 1 एक त्रिभुज के अन्दर एक ऐसा बिन्दु (point) ज्ञात करो कि इसकी तीनो शीर्ष बिन्दुओं से कोणीय दुरियों (angular distance) के वर्गो का योगफल निर्मिष्ट है। (500 शब्द, जून 2019, दिसम्बर 2018. जून 2017) उत्तर – माना की दिये हुए त्रिभुज के तीनों शीर्षो के निर्देशांक . माना अभीष्ट बिन्दु के निर्देशांक है। प्रश्नानुसार, हमें ऐसा ज्ञात करना है, कि निभिष्ट हो। \[ \begin{array}{l} \because \text { माना कि } Z=P A^{2}+P B^{2}+P C^{2} \\ = {\left[\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}\right]+\left[\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}\right]+} \\ {\left[\left(x-x_{3}\right)^{2}+\left(y-y_{3}\right)^{2}\right] } \end{array} \] अव के उच्चिएठ अथवा निभिष्ट होने के लिए, अर्थात् व अर्थात निभिष्ट है अथवा उच्चिएठ के लिए. अब Website www. ajaymeruvmoubooks.comViews

Views: 5,059

Question 3

Q8. \[ [5 \times 2=10] \] (a) Assuming that straight lines work as the plane mirror for a point, find the image of the point in the line . (b) If the lines are concurrent to each other find value of . \[ [5 \times 2=10] \] Q 9.Views

Views: 5,258

View more

Question 4

Comprehensive Exercise formula or formulae for the th term for each of the following (b) ,Views

Views: 5,756

Question Text

Evaluation of Double integral (4) Qtestion(1) Soln \[ \begin{array}{l} \int_{x=0} y=0 \\ =\int_{x=0}^{x=1}\left[\frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}\left(\frac{y}{\sqrt{1+x^{2}}}\right)\right]_{y=0}^{y 0 \sqrt{1+x^{2}}} d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}}\left(\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}\right)-\tan ^{-1}(\theta)\right) d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}}\left(\tan ^{-1}(1)-0\right) d x \\ =\int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}(\tan \pi / 4) d x \\ =\pi / 4 \int_{x=0}^{x=1} \frac{1}{\sqrt{1+x^{2}}} d x \\ =\pi / 4\left[\log x+\sqrt{1+x^{2}}\right]_{x=0}^{x=1} \\ =\pi / 4[\log (1+\sqrt{2})-\log (1)] \\ \int_{0}^{1} \cdot \int_{0}^{\sqrt{1+x^{2}} \frac{d x d y}{1+x^{2}+y^{2}}}=\pi / 4 \log (1+\sqrt{2}) \\ \frac{1}{1} x \end{array} \] Scanned with CamScanner

Updated On Jan 16, 2023
Topic Calculus
Subject Mathematics
Class Class 12 Passed
Answer Type Video solution: 1
Upvotes 130
Avg. Video Duration 17 min

You are watching: Evaluation of Double integral (4) Qtestion(1) ∫01​∫01+x2​​(1+x2+y2)dxdy​ ... Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts