e^(-2x)) dx Option 2: 3∫(e^(x) + e^(-x)) dx + C Option 3: ∫(e^(2x) + e^(-2x)) dx + 2x + C Option 4: ∫(e^(2x)

integration of e^2x in Hindi
integration of e^2x in Hindi

Get 5 free video unlocks on our app with code GOMOBILE

Snapsolve any problem by taking a picture.
Try it in the Numerade app?

Solved step-by-step

Integrate the function ∫(e^x + e^(-x)) dx
Option 1: ∫(e^(2x) – e^(-2x)) dx
Option 2: 3∫(e^(x) + e^(-x)) dx + C
Option 3: ∫(e^(2x) + e^(-2x)) dx + 2x + C
Option 4: ∫(e^(2x) – e^(2x)) dx + 2x + C

Solved by verified expert

This problem has been solved!

Try Numerade free for 7 days

05:21

a) ∫(3x + 1)(2x + 1)dxb) ∫3x e^(x^2) dxc) ∫(4 + 3x^2) dxd) ∫2cos(3x) dxe) ∫(2z √(4 – x^2)) dxf) ∫(1/(2x^5 + 1)) dx

08:17

Integrate each of the given functions.$$\int \frac{e^{x} d x}{e^{2 x}+3 e^{x}+2}$$

01:01

Integrate each of the functions.$$\int 3\left(4+e^{x}\right)^{3} e^{x} d x$$

01:11

Evaluate the integral.∫3xe*dxa. 3e*(x + 1) + Cb. ~3e^(x – 1) + Cc. ~e*(x + 1) + Cd. 3e^(x – 1) + Ce. 3e* + C

01:13

integrate each of the given functions.$$\int_{1}^{3} 3 e^{2 x}\left(e^{-2 x}-1\right) d x$$

Transcript

We can integrate each term separately using the power rule. Integrate e to the power x dx is equal to e to the power x plus c1. Integrate e to the power minus x dx is equal to minus e to the power minus x plus c2. Where c1 and c2 are constant of integration. Substituting these values into the original equation we get. Integrate e to the power x plus e to the power minus x dx is…

Enter your parent or guardian’s email address:

Already have an account? Log in

Create an account to get free access

or

EMAIL

PASSWORD

You are watching: e^(-2x)) dx Option 2: 3∫(e^(x) + e^(-x)) dx + C Option 3: ∫(e^(2x) + e^(-2x)) dx + 2x + C Option 4: ∫(e^(2x). Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts