Question
Question asked by Filo student
Class: subject: hence evaluate (i) or (ii)) \[ \begin{array}{l} \therefore I=\sqrt{x^{2}+a^{2}} \int 1 d x-\int\left[\frac{d\left(\sqrt{x^{2}+a^{2}}\right)}{d x} \cdot \int 1 d x\right] d x \\ =x \sqrt{x^{2}+a^{2}}-\int\left[\frac{1}{2 \sqrt{x^{2}+a^{2}}}(2 x) \cdot x\right] d x \\ =x \sqrt{x^{2}+a^{2}}-\int \frac{\left(x^{2}+a^{2}-a^{2}\right.}{\sqrt{x^{2}+a^{2}}} d x . \\ \text { – }=x \sqrt{x^{2}+a^{2}}-\int \frac{x^{2}+a^{2}}{\sqrt{x^{2}+a^{2}}} d x+a^{2} \int \frac{d x}{\sqrt{x^{2}+a^{2}}} \\ \therefore I=x \sqrt{x^{2}+a^{2}}-\int \sqrt{x^{2}+a^{2}} d x+a^{2} \int \frac{d x}{\sqrt{x^{2}+a^{2}}} \text {. } \\ {\left[\because \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c .\right]} \\ \end{array} \]
Filo tutor solutions (1)
Learn from their 1-to-1 discussion with Filo tutors.
8 mins
Uploaded on: 1/13/2023
Connect instantly with this tutor
Connect now
Taught by
Chandra Shekhar Verma
Total classes on Filo by this tutor – 20,368
Teaches : Mathematics
Connect instantly with this tutor
Download
Notes from this class (4 pages)
Was this solution helpful?
113
Share
Report
Still did not understand this question?
Mathematics tutors are online who are ready to help you right now.
Students who ask this question also asked
Question 2
Three of the following four are alike in a certain way based on the information given above and so form a group. Which is does not belong to that group?
Views: 5,228
View more
Question 4
41% [ الس. * * * 6:38 PM | 0.0KB/s C. Crop Image X No.: Date: Q. Change the order of integration & evaluate. y = √2-x²0x² x=1 I dx dy | x² + y²
Views: 5,270
Question Text |
Class: subject: hence evaluate (i) or (ii)) \[ \begin{array}{l} \therefore I=\sqrt{x^{2}+a^{2}} \int 1 d x-\int\left[\frac{d\left(\sqrt{x^{2}+a^{2}}\right)}{d x} \cdot \int 1 d x\right] d x \\ =x \sqrt{x^{2}+a^{2}}-\int\left[\frac{1}{2 \sqrt{x^{2}+a^{2}}}(2 x) \cdot x\right] d x \\ =x \sqrt{x^{2}+a^{2}}-\int \frac{\left(x^{2}+a^{2}-a^{2}\right.}{\sqrt{x^{2}+a^{2}}} d x . \\ \text { – }=x \sqrt{x^{2}+a^{2}}-\int \frac{x^{2}+a^{2}}{\sqrt{x^{2}+a^{2}}} d x+a^{2} \int \frac{d x}{\sqrt{x^{2}+a^{2}}} \\ \therefore I=x \sqrt{x^{2}+a^{2}}-\int \sqrt{x^{2}+a^{2}} d x+a^{2} \int \frac{d x}{\sqrt{x^{2}+a^{2}}} \text {. } \\ {\left[\because \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c .\right]} \\ \end{array} \] |
Updated On | Jan 13, 2023 |
Topic | Calculus |
Subject | Mathematics |
Class | Class 12 Passed |
Answer Type | Video solution: 1 |
Upvotes | 113 |
Avg. Video Duration | 8 min |