Class: subject: hence evaluate (i) ∫x2+1​dx or (ii)) ∫x2+4x+6​dx \[ \begi..

Integral of x sqrt(x+1)
Integral of x sqrt(x+1)

Question

Question asked by Filo student

Class: subject: hence evaluate (i) ∫x2+1dx or (ii)) ∫x2+4x+6dx \[ \b

Class: subject: hence evaluate (i) or (ii)) \[ \begin{array}{l} \therefore I=\sqrt{x^{2}+a^{2}} \int 1 d x-\int\left[\frac{d\left(\sqrt{x^{2}+a^{2}}\right)}{d x} \cdot \int 1 d x\right] d x \\ =x \sqrt{x^{2}+a^{2}}-\int\left[\frac{1}{2 \sqrt{x^{2}+a^{2}}}(2 x) \cdot x\right] d x \\ =x \sqrt{x^{2}+a^{2}}-\int \frac{\left(x^{2}+a^{2}-a^{2}\right.}{\sqrt{x^{2}+a^{2}}} d x . \\ \text { – }=x \sqrt{x^{2}+a^{2}}-\int \frac{x^{2}+a^{2}}{\sqrt{x^{2}+a^{2}}} d x+a^{2} \int \frac{d x}{\sqrt{x^{2}+a^{2}}} \\ \therefore I=x \sqrt{x^{2}+a^{2}}-\int \sqrt{x^{2}+a^{2}} d x+a^{2} \int \frac{d x}{\sqrt{x^{2}+a^{2}}} \text {. } \\ {\left[\because \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c .\right]} \\ \end{array} \]

Filo tutor solutions (1)

Learn from their 1-to-1 discussion with Filo tutors.

8 mins

Uploaded on: 1/13/2023

Connect instantly with this tutor

Connect now

Taught by

Chandra Shekhar Verma

Total classes on Filo by this tutor – 20,368

Teaches : Mathematics

Connect instantly with this tutor

DownloadArrow

Notes from this class (4 pages)

Was this solution helpful?

113

Share

Report

Doubt Icon

Still did not understand this question?

Mathematics tutors are online who are ready to help you right now.

Students who ask this question also asked

Question 2

Three of the following four are alike in a certain way based on the information given above and so form a group. Which is does not belong to that group?Views

Views: 5,228

View more

Question 4

41% [ الس. * * * 6:38 PM | 0.0KB/s C. Crop Image X No.: Date: Q. Change the order of integration & evaluate. y = √2-x²0x² x=1 I dx dy | x² + y²Views

Views: 5,270

Question Text

Class: subject: hence evaluate (i) or (ii)) \[ \begin{array}{l} \therefore I=\sqrt{x^{2}+a^{2}} \int 1 d x-\int\left[\frac{d\left(\sqrt{x^{2}+a^{2}}\right)}{d x} \cdot \int 1 d x\right] d x \\ =x \sqrt{x^{2}+a^{2}}-\int\left[\frac{1}{2 \sqrt{x^{2}+a^{2}}}(2 x) \cdot x\right] d x \\ =x \sqrt{x^{2}+a^{2}}-\int \frac{\left(x^{2}+a^{2}-a^{2}\right.}{\sqrt{x^{2}+a^{2}}} d x . \\ \text { – }=x \sqrt{x^{2}+a^{2}}-\int \frac{x^{2}+a^{2}}{\sqrt{x^{2}+a^{2}}} d x+a^{2} \int \frac{d x}{\sqrt{x^{2}+a^{2}}} \\ \therefore I=x \sqrt{x^{2}+a^{2}}-\int \sqrt{x^{2}+a^{2}} d x+a^{2} \int \frac{d x}{\sqrt{x^{2}+a^{2}}} \text {. } \\ {\left[\because \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c .\right]} \\ \end{array} \]

Updated On Jan 13, 2023
Topic Calculus
Subject Mathematics
Class Class 12 Passed
Answer Type Video solution: 1
Upvotes 113
Avg. Video Duration 8 min

You are watching: Class: subject: hence evaluate (i) ∫x2+1​dx or (ii)) ∫x2+4x+6​dx \[ \begi... Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts