Chapter 7 Class 12

Integral of sec^3x
Integral of sec^3x

Ex 7.5, 14 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.5, 14 - Chapter 7 Class 12 Integrals - Part 3

Ex 7.5

Ex 7.5, 2

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important

Ex 7.5, 7 Important

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important You are here

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important

Ex 7.5, 21 Important

Ex 7.5, 22 (MCQ)

Ex 7.5, 23 (MCQ) Important

Last updated at May 29, 2023 by Teachoo

Ex 7.5, 14 (3𝑥 − 1)/(𝑥 + 2)^2 We can write it as (3𝑥 − 1)/(𝑥 + 2)^2 = 𝐴/((𝑥 + 2) )+𝐵/(𝑥 + 2)^2 (3𝑥 − 1)/(𝑥 + 2)^2 = (𝐴(𝑥 + 2) + 𝐵)/(𝑥 + 2)^2 By cancelling denominator 3𝑥−1 = 𝐴(𝑥 + 2)+𝐵 Putting x = −2 in (1) 3𝑥−1=𝐴 (𝑥+2)+𝐵 3(−2)−1=𝐴 (−2+2)+𝐵 −6−1=𝐴×0+𝐵 −7=𝐵 𝐵=−7 Putting x = 0 in (1) 3𝑥−1=𝐴 (𝑥+2)+𝐵 3×0−1=𝐴 (0+2)+𝐵 −1=2𝐴+𝐵 −1=2𝐴+(−7) −1+7=2𝐴 2𝐴=6 𝐴=3 Hence we can write it as (3𝑥 − 1)/(𝑥 + 2)^2 = 3/( 𝑥 + 2)+(−7)/(𝑥 + 2)^2 Integrating 𝑤.𝑟.𝑡.𝑥. ∫1▒(3𝑥 − 1)/(𝑥 + 2)^2 𝑑𝑥=∫1▒(3/(𝑥 + 2) − 5/(𝑥 + 2)^2 ) 𝑑𝑥 =3∫1▒〖1/(𝑥 + 2) 〗 𝑑𝑥−7∫1▒〖1/(𝑥 + 2)^2 〗 𝑑𝑥 =3 〖log 〗|𝑥+2|−7∫1▒〖(𝑥+2)^(−2) 〗 𝑑𝑥 =3 〖log 〗|𝑥+2|−7 (𝑥 + 2)^(−2 + 1)/(−2 + 1) =3 〖log 〗|𝑥+2|−7 (𝑥 + 2)^(−1)/(−1) +𝐶 =𝟑 〖𝐥𝐨𝐠 〗|𝒙+𝟐|+𝟕/((𝒙 + 𝟐) ) +𝑪

You are watching: Chapter 7 Class 12. Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts