Answered: 2. QUICK DERIVATIVES AND INTEGRALS a) y…

Feynman’s technique is the greatest integration method of all time
Feynman’s technique is the greatest integration method of all time

Calculus: Early Transcendentals

Calculus: Early Transcendentals

8th Edition

ISBN: 9781285741550

Author: James Stewart

Publisher: Cengage Learning

expand_more

expand_more

format_list_bulleted

Concept explainers

Question

I really need help figuring out how to do this problem, using the cheat sheet formula is needed in this equation

2. QUICK DERIVATIVES AND INTEGRALS a) y = 13x4 + 3e 4x5 s Find y'. %3D

Transcribed Image Text:2. QUICK DERIVATIVES AND INTEGRALS a) y = 13×4 + 3e 4×5 s Find y’. %3D

*TATTOO"CHEAT SHEET - USE OFTEN! youR THE BASICS derrv. PX) MP CO) MC RX) X - fcx)+y ly CAN BE +,Ø,-) Xf'cx)+SLOPE(SLOPE CAN BE +,Ø,- §Ø = MAX OR MIN OR H. P.I.}) integ %3D X *f"Cx) + CONCAVITY (CONCAVITY IS U,A,Ø {0iS POINT OF INFLECTION}) DERIVATIVES PRODUCTS AND QUOTIENTS y=x^ y'- nx^- you" u isA FUNCTION, %3D U AND V y=uv y'= u'v +uv n-1 y'=nu" (u') X IS VAR., ARE FUNCTIONS y= e" y'- u'e" e AND ny= u y'= u'v -uv' V CONSTANTS dautdin y=Lnu y's 4 LOGS AND EXPONENTS y=a" y'=a"u’ına ) WHERE u IS A FUNC, INTEGRALS yoa" g =a*x' ina fais const, + X +K , n#-1 X IS VARVABLE Fa*(1) Lna ntl +k, n+-1 in(e*) =x (SIMPLIFIED, NOT DERIVATIVE ) =X (SIMPUFIED, NOT DERIVATIVE) + e" +K In(MN)= Ln M+ unN in (A) - LnM -UnN Lin(MP) = y=lagax a =x 4- Ju'u"dx → inu tK n- STEPS WHERE M EN ARE FUNCTIONS. (CONVERSIONS NOT DERIVATIVES) Pn M WHICH INTEGRAL? 1) MAKE IT 2) FIND U; CREATE U' 3) WE HAVE 4) MAKE IT LOOK LIKE TEMPLATE 5) PERFORM INTEGRAL PRETTY: WE WANT. CHANGE OF BASE: y=loga x -LogX = In x loga DEFINITE INTEGRALS ALSO Una y=Sax'dx = afx*ax y=S(ax^+bx") dx Fa) = ffondx JHondk = FO = F(b) - F(a) "dx %3D %3D

Transcribed Image Text:*TATTOO”CHEAT SHEET – USE OFTEN! youR THE BASICS derrv. PX) MP CO) MC RX) X – fcx)+y ly CAN BE +,Ø,-) Xf’cx)+SLOPE(SLOPE CAN BE +,Ø,- §Ø = MAX OR MIN OR H. P.I.}) integ %3D X *f”Cx) + CONCAVITY (CONCAVITY IS U,A,Ø {0iS POINT OF INFLECTION}) DERIVATIVES PRODUCTS AND QUOTIENTS y=x^ y’- nx^- you” u isA FUNCTION, %3D U AND V y=uv y’= u’v +uv n-1 y’=nu” (u’) X IS VAR., ARE FUNCTIONS y= e” y’- u’e” e AND ny= u y’= u’v -uv’ V CONSTANTS dautdin y=Lnu y’s 4 LOGS AND EXPONENTS y=a” y’=a”u’ına ) WHERE u IS A FUNC, INTEGRALS yoa” g =a*x’ ina fais const, + X +K , n#-1 X IS VARVABLE Fa*(1) Lna ntl +k, n+-1 in(e*) =x (SIMPLIFIED, NOT DERIVATIVE ) =X (SIMPUFIED, NOT DERIVATIVE) + e” +K In(MN)= Ln M+ unN in (A) – LnM -UnN Lin(MP) = y=lagax a =x 4- Ju’u”dx → inu tK n- STEPS WHERE M EN ARE FUNCTIONS. (CONVERSIONS NOT DERIVATIVES) Pn M WHICH INTEGRAL? 1) MAKE IT 2) FIND U; CREATE U’ 3) WE HAVE 4) MAKE IT LOOK LIKE TEMPLATE 5) PERFORM INTEGRAL PRETTY: WE WANT. CHANGE OF BASE: y=loga x -LogX = In x loga DEFINITE INTEGRALS ALSO Una y=Sax’dx = afx*ax y=S(ax^+bx”) dx Fa) = ffondx JHondk = FO = F(b) – F(a) “dx %3D %3D

Expert Solution

Check Mark

Trending nowThis is a popular solution!

Step by stepSolved in 3 steps with 3 images

Blurred answer

Knowledge Booster

Learn more about

Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.

Similar questions

Find the slope of the line tangent to the curve x + sin(y-π) = 2×3 + ey at thr point (-1,0).

arrow_forward

Find dy/dx using appropriate derivative rules. 1. y = 8x^5/2 – 7x-9 + square root of 5 2. ) y = (3x + 5)/ x^2 – 4x + 2 3. y = x^2 sin(3x) 4. y = square root csc(x) 5. y = tan^4 (x^2)

arrow_forward

Use implicit differentiation to find dydxdydx without first solving for y.x^4+y^4=−2 dy/dx=?

arrow_forward

arrow_back_ios

SEE MORE QUESTIONS

arrow_forward_ios

Recommended textbooks for you

Calculus: Early Transcendentals

Calculus

ISBN:9781285741550

Author:James Stewart

Publisher:Cengage Learning

Thomas’ Calculus (14th Edition)

Calculus

ISBN:9780134438986

Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir

Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)

Calculus

ISBN:9780134763644

Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz

Publisher:PEARSON

Calculus: Early Transcendentals

Calculus

ISBN:9781319050740

Author:Jon Rogawski, Colin Adams, Robert Franzosa

Publisher:W. H. Freeman

Calculus: Early Transcendental Functions

Calculus

ISBN:9781337552516

Author:Ron Larson, Bruce H. Edwards

Publisher:Cengage Learning

Calculus: Early Transcendentals

Calculus

ISBN:9781285741550

Author:James Stewart

Publisher:Cengage Learning

Thomas’ Calculus (14th Edition)

Calculus

ISBN:9780134438986

Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir

Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)

Calculus

ISBN:9780134763644

Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz

Publisher:PEARSON

Calculus: Early Transcendentals

Calculus

ISBN:9781319050740

Author:Jon Rogawski, Colin Adams, Robert Franzosa

Publisher:W. H. Freeman

Calculus: Early Transcendental Functions

Calculus

ISBN:9781337552516

Author:Ron Larson, Bruce H. Edwards

Publisher:Cengage Learning

You are watching: Answered: 2. QUICK DERIVATIVES AND INTEGRALS a) y…. Info created by THVinhTuy selection and synthesis along with other related topics.

Rate this post

Related Posts