ALGEBRA I (COMMON CORE)

ALGEBRAI(COMMONCORE)

The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

ALGEBRA I (Common Core)

Thursday, January 26, 2017 — 1:15 to 4:15 p.m., only

Student Name _____________________________________________________________

School Name ______________________________________________________________

The possession or use of any communications device is strictly prohibited when taking

this examination. If you have or use any communications device, no matter how brieﬂy,

your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.

A separate answer sheet for Part I has been provided to you. Follow the

instructions from the proctor for completing the student information on your answer

sheet.

This examination has four parts, with a total of 37 questions. You must answer

all questions in this examination. Record your answers to the Part I multiple-choice

questions on the separate answer sheet. Write your answers to the questions in

Parts II, III, and IV directly in this booklet. All work should be written in pen, except

for graphs and drawings, which should be done in pencil. Clearly indicate the neces-

sary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.

Utilize the information provided for each question to determine your answer.

Note that diagrams are not necessarily drawn to scale.

The formulas that you may need to answer some questions in this examination

are found at the end of the examination. This sheet is perforated so you may remove

it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use

the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph

paper is provided at the end of this booklet for any question for which graphing may

be helpful but is not required. You may remove this sheet from this booklet. Any work

done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed

at the end of the answer sheet, indicating that you had no unlawful knowledge of

the questions or answers prior to the examination and that you have neither given

nor received assistance in answering any of the questions during the examination.

Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice …

A graphing calculator and a straightedge (ruler) must be available for you to use while taking this

examination.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.

Algebra I (Common Core) – Jan. ’17 [2]

Use this space for

computations.1 Which expression is equivalent to 16×2

Ϫ 36?

(1) 4(2x Ϫ 3)(2x Ϫ 3) (3) (4x Ϫ 6)(4x Ϫ 6)

(2) 4(2x ϩ 3)(2x Ϫ 3) (4) (4x ϩ 6)(4x ϩ 6)

2 What is the solution set of the equation (x Ϫ 2)(x Ϫ a) ϭ 0?

(1) Ϫ2 and a (3) 2 and a

(2) Ϫ2 and Ϫa (4) 2 and Ϫa

3 Analysis of data from a statistical study shows a linear relationship in

the data with a correlation coefﬁcient of Ϫ0.524. Which statement

best summarizes this result?

(1) There is a strong positive correlation between the variables.

(2) There is a strong negative correlation between the variables.

(3) There is a moderate positive correlation between the variables.

(4) There is a moderate negative correlation between the variables.

4 Boyle’s Law involves the pressure and volume of gas in a container.

It can be represented by the formula P1V1 ϭ P2V2. When the formula

is solved for P2, the result is

(1) P1V1V2 (3)

P1V1_______

V2

(2)

V2______

P1V1

(4)

P1V2_______

V1

Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial

credit will be allowed. Utilize the information provided for each question to determine your

answer. Note that diagrams are not necessarily drawn to scale. For each statement or question,

choose the word or expression that, of those given, best completes the statement or answers the

question. Record your answers on your separate answer sheet. [48]

Algebra I (Common Core) – Jan. ’17 [3] [OVER]

Use this space for

computations.5 A radio station did a survey to determine what kind of music

to play by taking a sample of middle school, high school, and

college students. They were asked which of three different types of

music they prefer on the radio: hip-hop, alternative, or classic rock.

The results are summarized in the table below.

Hip-Hop Alternative Classic Rock

Middle School 28 18 4

High School 22 22 6

College 16 20 14

What percentage of college students prefer classic rock?

(1) 14% (3) 33%

(2) 28% (4) 58%

6 Which function has zeros of Ϫ4 and 2?

(2)

x

y

(4)

x

y

g(x) x2

7x 8f(x) x2

7x 8

(3)(1)

Algebra I (Common Core) – Jan. ’17 [4]

Use this space for

computations.7 Which expression is equivalent to 2(3g Ϫ 4) Ϫ (8g ϩ 3)?

(1) Ϫ2g Ϫ 1 (3) Ϫ2g Ϫ 7

(2) Ϫ2g Ϫ 5 (4) Ϫ2g Ϫ 11

8 In 2014, the cost to mail a letter was 49¢ for up to one ounce.

Every additional ounce cost 21¢. Which recursive function could be

used to determine the cost of a 3-ounce letter, in cents?

(1) a1 ϭ 49; an ϭ an Ϫ 1 ϩ 21

(2) a1 ϭ 0; an ϭ 49an Ϫ 1 ϩ 21

(3) a1 ϭ 21; an ϭ an Ϫ 1 ϩ 49

(4) a1 ϭ 0; an ϭ 21an Ϫ 1 ϩ 49

9 A car leaves Albany, NY, and travels west toward Buffalo, NY.

The equation D ϭ 280 Ϫ 59t can be used to represent the distance,

D, from Buffalo after t hours. In this equation, the 59 represents the

(1) car’s distance from Albany

(2) speed of the car

(3) distance between Buffalo and Albany

(4) number of hours driving

10 Faith wants to use the formula C(f) ϭ 5__

9 (f Ϫ 32) to convert degrees

Fahrenheit, f, to degrees Celsius, C(f). If Faith calculated C(68),

what would her result be?

(1) 20° Celsius (3) 154° Celsius

(2) 20° Fahrenheit (4) 154° Fahrenheit

Algebra I (Common Core) – Jan. ’17 [5] [OVER]

Use this space for

computations.11 Which scenario represents exponential growth?

(1) A water tank is ﬁlled at a rate of 2 gallons/minute.

(2) A vine grows 6 inches every week.

(3) A species of ﬂy doubles its population every month during the

summer.

(4) A car increases its distance from a garage as it travels at a constant

speed of 25 miles per hour.

12 What is the minimum value of the function y ϭ |x ϩ 3| Ϫ 2?

(1) Ϫ2 (3) 3

(2) 2 (4) Ϫ3

13 What type of relationship exists between the number of pages printed

on a printer and the amount of ink used by that printer?

(1) positive correlation, but not causal

(2) positive correlation, and causal

(3) negative correlation, but not causal

(4) negative correlation, and causal

14 A computer application generates a sequence of musical notes using

the function f(n) ϭ 6(16)n

, where n is the number of the note in the

sequence and f(n) is the note frequency in hertz. Which function will

generate the same note sequence as f(n)?

(1) g(n) ϭ 12(2)

4n

(3) p(n) ϭ 12(4)

2n

(2) h(n) ϭ 6(2)

4n

(4) k(n) ϭ 6(8)

2n

Algebra I (Common Core) – Jan. ’17 [6]

Use this space for

computations.15 Which value of x is a solution to the equation 13 Ϫ 36×2

ϭ Ϫ12?

(1) 36___

25

(3) Ϫ 6__

5

(2)

25___

36

(4) Ϫ

5__

6

16 Which point is a solution to the system below?

2y Ͻ Ϫ12x ϩ 4

y Ͻ Ϫ6x ϩ 4

(1) (1,

1__

2 ) (3) (Ϫ

1__

2 ,5)

(2) (0,6) (4) (Ϫ3,2)

17 When the function f(x) ϭ x2

is multiplied by the value a, where a Ͼ 1,

the graph of the new function, g(x) ϭ ax2

(1) opens upward and is wider

(2) opens upward and is narrower

(3) opens downward and is wider

(4) opens downward and is narrower

18 Andy has $310 in his account. Each week, w, he withdraws $30 for

his expenses. Which expression could be used if he wanted to ﬁnd

out how much money he had left after 8 weeks?

(1) 310 Ϫ 8w (3) 310w Ϫ 30

(2) 280 ϩ 30(w Ϫ 1) (4) 280 Ϫ 30(w Ϫ 1)

Algebra I (Common Core) – Jan. ’17 [7] [OVER]

Use this space for

computations.19 The daily cost of production in a factory is calculated using

c(x) ϭ 200 ϩ 16x, where x is the number of complete products

manufactured. Which set of numbers best deﬁnes the domain of

c(x)?

(1) integers (3) positive rational numbers

(2) positive real numbers (4) whole numbers

20 Noah conducted a survey on sports participation. He created

the following two dot plots to represent the number of students

participating, by age, in soccer and basketball.

8 10 126 7 9 11

Soccer Players’ Ages

8 10 126 7 9 11

Basketball Players’ Ages

Which statement about the given data sets is correct?

(1) The data for soccer players are skewed right.

(2) The data for soccer players have less spread than the data for

basketball players.

(3) The data for basketball players have the same median as the data

for soccer players.

(4) The data for basketball players have a greater mean than the data

for soccer players.

Algebra I (Common Core) – Jan. ’17 [8]

Use this space for

computations.21 A graph of average resting heart rates is shown below. The average

resting heart rate for adults is 72 beats per minute, but doctors

consider resting rates from 60-100 beats per minute within normal

range.

20

120

100

80

60

40

0 10 20 30 40 50 60

y

x

HeartRate(beats/min)

Average Resting Heart Rate by Age

Age (years)

(0,112)

(20,72) (50,72)

Which statement about average resting heart rates is not supported by

the graph?

(1) A 10-year-old has the same average resting heart rate as a

20-year-old.

(2) A 20-year-old has the same average resting heart rate as a

30-year-old.

(3) A 40-year-old may have the same average resting heart rate for

ten years.

(4) The average resting heart rate for teenagers steadily decreases.

22 The method of completing the square was used to solve the equation

2×2

Ϫ 12x ϩ 6 ϭ 0. Which equation is a correct step when using this

method?

(1) (x Ϫ 3)2

ϭ 6 (3) (x Ϫ 3)2

ϭ 3

(2) (x Ϫ 3)2

ϭ Ϫ6 (4) (x Ϫ 3)2

ϭ Ϫ3

Algebra I (Common Core) – Jan. ’17 [9] [OVER]

Use this space for

computations.23 Nancy works for a company that offers two types of savings plans.

Plan A is represented on the graph below.

10 20 30 40 50 60

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0

Weeks

Savings

Plan A

Plan B is represented by the function f(x) ϭ 0.01 ϩ 0.05×2

, where x is

the number of weeks. Nancy wants to have the highest savings possible

after a year. Nancy picks Plan B.

Her decision is

(1) correct, because Plan B is an exponential function and will

increase at a faster rate

(2) correct, because Plan B is a quadratic function and will increase

at a faster rate

(3) incorrect, because Plan A will have a higher value after 1 year

(4) incorrect, because Plan B is a quadratic function and will increase

at a slower rate

24 The 2014 winner of the Boston Marathon runs as many as 120 miles

per week. During the last few weeks of his training for an event, his

mileage can be modeled by M(w) ϭ 120(.90)w Ϫ 1

, where w represents

the number of weeks since training began. Which statement is true

about the model M(w)?

(1) The number of miles he runs will increase by 90% each week.

(2) The number of miles he runs will be 10% of the previous week.

(3) M(w) represents the total mileage run in a given week.

(4) w represents the number of weeks left until his marathon.

Algebra I (Common Core) – Jan. ’17 [10]

25 In attempting to solve the system of equations y ϭ 3x Ϫ 2 and 6x Ϫ 2y ϭ 4, John graphed the two

equations on his graphing calculator. Because he saw only one line, John wrote that the answer to

the system is the empty set. Is he correct? Explain your answer.

Part II

Answer all 8 questions in this part. Each correct answer will receive 2 credits. Clearly

indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs,

charts, etc. Utilize the information provided for each question to determine your answer.

Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct

numerical answer with no work shown will receive only 1 credit. All answers should be written in

pen, except for graphs and drawings, which should be done in pencil. [16]

Algebra I (Common Core) – Jan. ’17 [11] [OVER]

26 A typical marathon is 26.2 miles. Allan averages 12 kilometers per hour when running in

marathons.

Determine how long it would take Allan to complete a marathon, to the nearest tenth of an hour.

Justify your answer.

Algebra I (Common Core) – Jan. ’17 [12]

27 Solve the inequality below:

1.8 Ϫ 0.4y ≥ 2.2 Ϫ 2y

Algebra I (Common Core) – Jan. ’17 [13] [OVER]

28 Jakob is working on his math homework. He decides that the sum of the expression 1__

3 ϩ 6√

_

5____

7

must be rational because it is a fraction. Is Jakob correct? Explain your reasoning.

Algebra I (Common Core) – Jan. ’17 [14]

29 Graph the inequality y Ͼ 2x Ϫ 5 on the set of axes below.

State the coordinates of a point in its solution.

y

x

Algebra I (Common Core) – Jan. ’17 [15] [OVER]

30 Sandy programmed a website’s checkout process with an equation to calculate the amount

customers will be charged when they download songs.

The website offers a discount. If one song is bought at the full price of $1.29, then each additional song

is $.99.

State an equation that represents the cost, C, when s songs are downloaded.

Sandy ﬁgured she would be charged $52.77 for 52 songs. Is this the correct amount? Justify your

answer.

Algebra I (Common Core) – Jan. ’17 [16]

31 A family is traveling from their home to a vacation resort hotel. The table below shows their

distance from home as a function of time.

Time (hrs) 0 2 5 7

Distance (mi) 0 140 375 480

Determine the average rate of change between hour 2 and hour 7, including units.

Algebra I (Common Core) – Jan. ’17 [17] [OVER]

32 Nora says that the graph of a circle is a function because she can trace the whole graph without

picking up her pencil.

Mia says that a circle graph is not a function because multiple values of x map to the same y-value.

Determine if either one is correct, and justify your answer completely.

Algebra I (Common Core) – Jan. ’17 [18]

33 Graph f(x) ϭ |x| and g(x) ϭ Ϫx2

ϩ 6 on the grid below.

Does f(Ϫ2) ϭ g(Ϫ2)? Use your graph to explain why or why not.

Part III

Answer all 4 questions in this part. Each correct answer will receive 4 credits. Clearly indicate

the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.

Utilize the information provided for each question to determine your answer. Note that diagrams

are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with

no work shown will receive only 1 credit. All answers should be written in pen, except for graphs

and drawings, which should be done in pencil. [16]

Algebra I (Common Core) – Jan. ’17 [19] [OVER]

34 Two friends went to a restaurant and ordered one plain pizza and two sodas. Their bill totaled

$15.95. Later that day, ﬁve friends went to the same restaurant. They ordered three plain pizzas

and each person had one soda. Their bill totaled $45.90.

Write and solve a system of equations to determine the price of one plain pizza. [Only an algebraic

solution can receive full credit.]

Algebra I (Common Core) – Jan. ’17 [20]

35 Tanya is making homemade greeting cards. The data table below represents the amount she spends

in dollars, f(x), in terms of the number of cards she makes, x.

x f(x)

4 7.50

6 9

9 11.25

10 12

Write a linear function, f(x), that represents the data.

Explain what the slope and y-intercept of f(x) mean in the given context.

Algebra I (Common Core) – Jan. ’17 [21] [OVER]

36 Alex launched a ball into the air. The height of the ball can be represented by the equation

h ϭ Ϫ8t2

ϩ 40t ϩ 5, where h is the height, in units, and t is the time, in seconds, after the ball was

launched. Graph the equation from t ϭ 0 to t ϭ 5 seconds.

Time (in seconds)

Height(units)

State the coordinates of the vertex and explain its meaning in the context of the problem.

Algebra I (Common Core) – Jan. ’17 [22]

37 Ian is borrowing $1000 from his parents to buy a notebook computer. He plans to pay them back

at the rate of $60 per month. Ken is borrowing $600 from his parents to purchase a snowboard.

He plans to pay his parents back at the rate of $20 per month.

Write an equation that can be used to determine after how many months the boys will owe the same

amount.

Determine algebraically and state in how many months the two boys will owe the same amount.

State the amount they will owe at this time.

Ian claims that he will have his loan paid off 6 months after he and Ken owe the same amount.

Determine and state if Ian is correct. Explain your reasoning.

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate

the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.

Utilize the information provided to determine your answer. Note that diagrams are not necessarily

drawn to scale. A correct numerical answer with no work shown will receive only 1 credit.

All answers should be written in pen, except for graphs and drawings, which should be done in

pencil. [6]