# 2, 20 (x+2), x < 0 (a) âˆ«f(x) dx (b) âˆ«f(x) dx âˆ«f(x) dx âˆ«f(x) dx 18. In each part, evaluate the integral, given that âˆ«2x < 1 f(x) = 12, x > 1 âˆ«f(x) dx (b) âˆ«f(x) dx (c) âˆ«f(x) dx âˆ«f(x) d

Integral of 1/(x+1)^2 (substitution)
Integral of 1/(x+1)^2 (substitution)

Get 5 free video unlocks on our app with code GOMOBILE

Snapsolve any problem by taking a picture.
Try it in the Numerade app?

(c) âˆ«(x-1) dx + 15 âˆ«2 dx
âˆ«(0) J_ (T – x) dx + (d) âˆ«(1- x!) dx
âˆ«cos x dx
âˆ«(2x – 3) dx
âˆ«âˆš(-x) dx
16. (a) âˆ«6 dx
âˆ«(T/3) sin x dx
âˆ«(x – 2) dx
âˆ«âˆš(4 – x) dx
17. In each part, evaluate the integral, given that f(x) = {x – 2, 20 (x+2), x < 0}
(a) âˆ«f(x) dx
(b) âˆ«f(x) dx
âˆ«f(x) dx
âˆ«f(x) dx
18. In each part, evaluate the integral, given that âˆ«2x < 1 f(x) = 12, x > 1
âˆ«f(x) dx
(b) âˆ«f(x) dx
(c) âˆ«f(x) dx
âˆ«f(x) dx

This problem has been solved!

Try Numerade free for 7 days

02:18

(a) âˆ«(3xe^(-2x))/(x+3) dx(b) âˆ«(x^2+3)/(3x+2) dx(c) âˆ«(dx)/(âˆš(x^2+1))(d) âˆ«sin^2(x) cos^2(x) dx(e) âˆ«(x^2 ln(x)) dx

04:38

(a) ∫x^3 −√x + sin(x) dx(b) ∫(x/(x^2 + 1)^2)dx

(c). √π ∫. x cos(x^2) dx 0

(d) ∫x^5ln(x) dx

10:51

Determine:(a) $\int 2 \sin (3 x+1) d x$(b) $\int \sqrt{5-2 x} d x$(c) $\int 6 \cdot e^{t-1 x} d x$(d) $\int(4 x+1)^{3} \mathrm{~d} x$(e) $\int 4^{2 u-3} d x$(f) $\int 6 \cos (1-2 x) d x$(g) $\int \frac{5}{3 x-2} d x$(h) $\int 3 \sec ^{2}(1+4 x) \mathrm{d} x$

01:33

Integrate using the integration by parts formula: âˆ«(xv(x+1)dx) = 2xâˆ«(x+1)^(2/3)dx + 15âˆ«(4(x+1)^(2/3))dx + C

09:04

In each part, evaluate the integral, given that$$f(x)=\left\{\begin{array}{ll}|x-2|, & x \geq 0 \\x+2, & x<0\end{array}\right.$$(a) $\int_{-2}^{0} f(x) d x$(b) $\int_{-2}^{2} f(x) d x$(c) $\int_{0}^{6} f(x) d x$(d) $\int_{-4}^{6} f(x) d x$

Oops! There was an issue generating an instant solution

Create an account to get free access

or

EMAIL