Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important You are here
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.5, 21 Integrate the function 1/((𝑒^𝑥 − 1) ) [Hint : Put ex = t] Let 𝑒^𝑥 = 𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 𝑒^𝑥 = 𝑑𝑡/𝑑𝑥 𝑑𝑥 = 𝑑𝑡/𝑒^𝑥 Therefore ∫1▒1/((𝑒^𝑥 − 1) ) 𝑑𝑥 = ∫1▒1/((𝑡 − 1) ) 𝑑𝑡/𝑒^𝑥 = ∫1▒𝑑𝑡/(𝑡(𝑡 − 1) ) We can write integrand as 1/(𝑡(𝑡 − 1) ) = 𝐴/𝑡 + 𝐵/(𝑡 − 1) 1/(𝑡(𝑡 − 1) ) = (𝐴(𝑡 − 1) + 𝐵𝑡)/𝑡(𝑡 − 1) Cancelling denominator 1 = 𝐴(𝑡−1)+𝐵𝑡 Putting t = 0 in (1) 1 = 𝐴(0−1)+𝐵×0 1 = 𝐴×(−1) 1 = −𝐴 𝐴 = −1 Putting t = 1 1 = 𝐴(1−1)+𝐵×1 1 = 𝐴×0+𝐵 1 = 𝐵 𝐵 = 1 Therefore ∫1▒1/(𝑡(𝑡 − 1) ) 𝑑𝑡 = ∫1▒(−1)/(𝑡 ) 𝑑𝑡 + ∫1▒1/(𝑡 − 1 ) = −〖log 〗|𝑡|+〖log 〗|𝑡−1|+𝐶 = 〖log 〗|(𝑡 − 1)/𝑡|+𝐶 Putting back t = 𝑒^𝑥 = 〖𝑙𝑜𝑔 〗|(𝑒^𝑥 − 1)/𝑒^𝑥 |+𝐶 = 〖𝐥𝐨𝐠 〗((𝒆^𝒙 − 𝟏)/𝒆^𝒙 )+𝑪 Since ex > 1 for x > 0 ∴ ex – 1 > 0 ⇒ |(𝒆^𝒙 − 𝟏)/𝒆^𝒙 |=((𝒆^𝒙 − 𝟏)/𝒆^𝒙 ) (“As ” 𝑙𝑜𝑔 𝐴−𝑙𝑜𝑔 𝐵” = ” 𝑙𝑜𝑔 𝐴/𝐵)